

Agenda

- Failure Mode and Effect Analysis (FMEA)
- **02.** FMEA Drawbacks
- 03 New Risk Priority Number criteria and formula
- **O**4 Communications-Based Train Control (CBTC)
- **05**. FMEA applied to CBTC
- **06.** Conclusions and Future Work

Failure Mode and Effect Analysis (FMEA)

- Engineering method designed to define, identify, and present solutions for system failures, problems, or errors.
- FMEA has five fundamental steps:
 - system subdivision
 - failure modes identification
 - RPN calculation
 - prevention actions recording
 - analysis reporting
- Identifies necessary decisions to prevent individual system failures and establish the risk priorities of failure modes through the Risk Priority Number (RPN).

Failure Mode and Effect Analysis (FMEA)

FMEA – 5 steps

- System subdivision
- Failure modes identification
- RPN calculation
- Prevention actions recording
- Analysis reporting

INFRACRIT

Failure Mode and Effect Analysis (FMEA)

FMEA – 5 steps

- System subdivision
- Failure modes identification
- RPN calculation
- Prevention actions recording
- Analysis reporting

INFRACRIT

 \mathbf{O}

- System subdivision
- Failure modes identification
- RPN calculation
- Prevention actions recording
- Analysis reporting

- System subdivision
- Failure modes identification
- RPN calculation
- Prevention actions recording
- Analysis reporting

0

FMEA – 5 steps

- System subdivision
- Failure modes identification
- RPN calculation
- Prevention actions recording
- Analysis reporting

INFRACRIT

FMEA RPN calculation variables

Occurrence	1	2	3	4	5	6	7	8	9	10
(O)	Ne	early	Imp	poss	ible	Fa	ilure	Alr	nost	Inevitable
Severity	1	2	3	4	5	6	7	8	9	10
(S)	No	o Eff	ect					Ha	zarc	lous Effect
Detectability	1	2	3	4	5	6	7	8	9	10
(D)	Al	mos	t Ce	rtair	ı		Ab	solu	ite U	Incertainty

9

DESCRIÇÃO

FMEA Drawbacks

- Bounded to the design limitations, such as the granularity
- Only considers failure modes regardless of its origin and the associated mechanisms
- Subjective, depending on the study team's experience

FMEA Drawbacks

- RPN has enormous gaps in ranges, it generates as just 120 of 1000 numbers
- Equal values of RPN are obtained from several combinations of diverse factors
- Does not have associated cost in the analysis
- Does not consider environmental or external damages to the system

11

New RPN Criteria and Formula

- Our goal is to assess the risk of different system failure modes based on the economic impact they represent.
 - Social
 - Infrastructural
 - Environmental
 - Delay

New RPN Criteria and Formula – Social Factor

Level	Description	Criteria
1	Low	Reduced number of light injuries $1 \leq LI \leq 10$ $7400 \in C \leq 74,000 \in$
2	Low	Moderate number of light injuries $10 < LI \leq 30$ $81,400 \in < C \leq 222,000 \in$
3	Low	High number of light injuries LI > 30 C > 222,000 €
4	Moderate	High number of light injuries Reduced number of serious injuries $LI \ge 30$ $1 \le SI \le 10$ $773,400 \in C \le 1,203,000 \in$
5	Moderate	High number of light injuries Moderate number of serious injuries LI > 30 $10 < SI \le 30$ $1,203,000 \in C \le 3,331,000 \in$
6	Moderate	High number of light injuries and serious injuries LI > 30 SI > 30 C > 3,444,000 €
7	High	Reduced number of serious injuries and fatalities $1 \leq SI \leq 10$ $1 \leq F \leq 10$ 910,000 $\boldsymbol{\epsilon} \leq C \leq 11,252,000 \boldsymbol{\epsilon}$
8	High	Moderate number of serious injuries and fatalities $10 < SI \leq 30$ $10 \leq F \leq 30$ $8,137,400 \in C \leq 27,312,000 \in$
9	Catastrophic	High number of fatalities F > 30 C > 24,090,000 €
10	Catastrophic	High number of serious injuries and fatalities SI > 30 F > 30 $C > 27,312,000 \in$

New RPN Criteria and Formula – Infrastructural Factor

Level	Description	Criteria
1	Low	Low damage to the railway track (≤ 1000 m) 0 < C ≤ 250,000 €
2	Low	Low damage to 1 or more bogies 250,000 € < C ≤ 500,000 €
3	Low	Low damage to the railway track and 1 or more bogies $500,000 \in < C \leq 750,000 \in$
4	Moderate	1 or more bogies derailment 750,000 € < C ≤ 1,250,000 €
5	Moderate	1 or more bogies derailment and access points destruction 1 250,000 € < C ≤ 1,750,000 €
6	Moderate	Serious damage to the railway track (> 1000 m) 1 or more bogies derailment and access points destruction $750,000 \in < C \leq 2,250,000 \in$
7	High	2 trains collision 2,250,000 € < C ≤ 3,250,000 €
8	High	2 trains collision and access points destruction 3,250,000 € < C ≤ 4,250,000 €
9	Catastrophic	2 trains collision, access points destruction and severe damage to the railway track 4,250,000 € < C ≤ 6,250,000 €
10	Catastrophic	2 trains collision, 1 or more bogies derailment, access points destruction and serious damage to the railway track C > 6,250,000 €

New
RPN
Criteria
and
Formula

Environ mental Factor

Level	Description	Criteria
1	Low	$\begin{array}{l} 0 < \mathrm{QCO}_2 \leqslant 500 \ \mathrm{tCO}_2 \\ 0 < \mathrm{RSSD}(\mathrm{CO}_2) \ \leqslant 12{,}500 \ \end{array} $
2	Low	500 < QCO ₂ ≤ 1000 tCO ₂ 12,500 < RSSD(CO ₂) ≤ 25,000 €
3	Low	1000 < QCO ₂ ≤ 1500 tCO ₂ 25,000 < RSSD(CO ₂) ≤ 37,500 €
4	Moderate	1500 < QCO ₂ ≤ 2000 tCO ₂ 37,500 < RSSD(CO ₂) ≤ 50,000 €
5	Moderate	2000 < QCO ₂ ≤ 2500 tCO ₂ 50,000 < RSSD(CO ₂) ≤ 62,500 €
6	Moderate	2500 < QCO ₂ ≤ 3000 tCO ₂ 62,500 < RSSD(CO ₂) ≤ 65,000 €
7	High	3000 < QCO ₂ ≤ 3500 tCO ₂ 65,000 < RSSD(CO ₂) ≤ 67,500 €
8	High	3500 < QCO ₂ ≤ 4000 tCO ₂ 67,500 < RSSD(CO ₂) ≤ 70,000 €
9	Very High	4000 < QCO ₂ ≤ 4500 tCO ₂ 70,000 < RSSD(CO ₂) ≤ 72,500 €
10	Very High	QCO ₂ > 4500 tCO ₂ RSSD(CO ₂) > 72,500 €

New RPN Criteria and Formula – Delay Factor

Level	Description	Criteria
1	Low	C ≤ 25,000 € (± 12 h)
2	Low	25,000 € < C ≤ 50,000 €
3	Low	50,000 € < C ≤ 75,000 €
4	Moderate	75,000 € < C \leq 100,000 €
5	Moderate	100,000 € < C \leqslant 125,000 €
6	Moderate	125,000 € < C \leqslant 150,000 €
7	High	150,000 € < C \leqslant 175,000 €
8	High	175,000 € < C \leqslant 200,000 €
9	Very High	200,000 € < C ≤ 225,000 €
10	Very High	C > 225,000 €

New RPN Criteria and Formula

- To a final risk estimation, we propose five different categories: Very low, low, moderate, high, and catastrophic.
- RPN = SF * SFw + IF * Ifw + EF * Efw + DF * DFw

SF = 0.5 IF = 0.35 EF = 0.05 DF = 0.1

• Social Factor (SF), Infrastructure Factor (IF), Environmental Factor (EF), Delay Factor (DF), weight (w)

Category	RPN
Very Low	[1–2]
Low	[2–4]
Moderate	[4–6]
High	[6–8]
Catastrophic	[8–10]

Communications-Based Train Control (CBTC)

Communications-Based Train Control (CBTC)

INFRACRIT

CBTC – onboard components

- Vehicle Onboard Computer (VOBC)
- Onboard Automatic Train Control (ATC):
 - Automatic Train Protection (ATP)
 - Automatic Train Operation (ATO)
- Radio Communication System (RCS)

INFRACRIT

CBTC – Cyber-security attacks

- Jamming attacks
- Man-in-the-Middle (MitM)
 - Message spoofing
 - Replay attacks

CBTC – Cyber-security defences

- End-to-end data encryption
- Authentication methods

• Examples:

- Rail Radio Intrusion Detection System (RRIDS)
- µTesla
- Address Resolution Protocol poisoning prevention
 - MitM-Resistant ARP
- Authenticated Acknowledgement

FMEA applied to CBTC Step 1 – System subdivision

Subsystems	Components
Local control system	Automatic train supervision (ATS)
Wayside system	Zone Controller (ZC) Computer-Based Interlocking (CI)
Vehicle onboard system	Automatic train protection (ATP) Automatic train operation (ATO) Vehicle Onboard Computer (VOBC) Data Communication System (DCS)
Train to the wayside communication system	Radio Communication System (RCS) Access Points (AP)

FMEA applied to CBTC Step 2 – Failure modes identification

Failure Mode	Failure Cause	Failure Effect
Wrong Control Messages injection (Packet Spoofing)	Message Spoofing Attack	Unexpected abrupt braking Train location loss Train speed control loss Train full stop Train collision Train derailment
Message Dropping (Packet Dropping)	Message Dropping Attack	Train full stop Emergency braking; Change to conventional operation
Signal Jamming	Jamming Attack	Train full stop Emergency braking; Change to conventional operation
Communication Delay (Extensive packet duplication and forwarding)	Replay Attack	Train control performance breakdown Change to conventional operation

FMEA applied to CBTC Step 3 – RPN calculation

Failure Mode	Social	Infrastr	Environ	Delay		RPN
Tanute Mode	0.5	0.35	0.05	0.1	Original	Our Approach
Wrong control message injection	10	10	10	10	10,000	10
Message dropping	3	2	1	2	12	2.45
Signal jamming	3	2	1	2	12	2.45
Communication Delay	1	1	1	1	1	1

FMEA applied to CBTC Step 4 – Prevention Actions

Failure Modes	Prevention actions
Wrong control message injection	Originating seed and salt variation method for authentication. Long term IP/MAC mapping table
Message Dropping	Query node after messages are sent Time communications between two nodes with a limit waitable timer
Signal Jamming	Low transmission power deteriorates chances for attacker signal location Transmission of short pulses on a broad spectrum of a frequency band at the same time
Communication Delay	Originating seed and salt variation method for authentication Long term IP/MAC mapping table IP/MAC binding allows to prioritize traffic with static IP assignment reservation

QUESTIONS ?

THANK YOU

